Lead-Free Microstructure Evolution Studies

Lead Free: Constitutive Equations

Time-Dependent Creep

Model	Reference	Equation	Composition		Constants			
Power Law Creep	Wiese			C1 [s ⁻¹]		C2	C3 [MP a ⁻¹]	C4 [K]
		$\mathcal{E} = C_1 \left[(C_1 \sigma) \right]^{C_2} \exp \left(\frac{-C_4}{T(K)} \right)$	SnAg4.0Cu0.5	2x10 ⁻²¹		18	1	9995
			SnAg3.5	5x10	0.6 11		1	9028
	Darveaux Garofalo Creep fitted by Krishna		SnAg3.5	9.64x10 ⁻⁶		6.5	1	6557
	Amagai	$\varepsilon = A(\sigma)^* e^{-\left(\frac{\Omega}{E_s T}\right)}$	SnAg3.5Cu0.7	Q/R		N		A
			5	13180		15.795		4.77x10 ¹²
Garofalo Creep. Sinh				C1 [s	C2 (1/MPa)		СЗ	C4
	Darveaux	$\frac{d\gamma_{i}}{dt} = C_{i}[\sin(C_{i}\sigma)]^{C_{i}} \exp\left(\frac{-C_{i}}{T}\right)$	SnAg3.5	18(553 -T)/T	1/(6386- 11.55T) psi		5.5	5802 K
	Hong		SnAg3.5	96437	0.103		6.6 5	9562 K
	Lau		SnAgCu	44100 0	5x10 ⁻⁹ Pa		4.2	5412 K
	Amagai			For SnAg3.5Cu0.75				
		$\begin{split} \hat{\mathcal{E}}_{p} &= A e^{-Q(2T)} \left[\sinh \left(\frac{C}{s} \right)^{2} \right]^{2\alpha} \\ i &= \left[h_{\parallel} \right] - \frac{i}{s} \right]^{2} , \text{sign} \left(1 - \frac{i}{s} \right) \right] \mathcal{E}_{p} \\ i' &= \overline{s} \left[\frac{\hat{\mathcal{E}}_{p}}{A} e^{Q(2T)} \right]^{2} \end{split}$	Q/R (1/K)			8400		
Anand's model			A (1/sec)			4.61 x 10 ⁶		
			ς		0.038			
			m		0.162			
			s (MPa)		1.04			
			n		4.60 x 10 ⁻³			
			a L (MD-	,)		1.56		
			h _o (MPa	1)		3090		

•It is very difficult to find consistent data among literature, or one source for

all the properties needed.

Time-Independent Plasticity

Solder	Elastic Modulus (GPa)	CTE (ppm/K)
63Sn37Pb	30	24
SnAgCu	50	20
SnAg	48	21

Lead Free: Fatigue Life Prediction

•Most fatigue tests in literature are based on tests of bulk solder samples, not testing of actual packages.

Power-law

Crack Growth Rate

$$N_f = \left(\frac{D}{C}\right)$$

OR

Solder	D	С	n	source
63Sn37Pb	$\Delta\epsilon_{in}$.46	42	Dasgupta
Sn3.9Ag0.6Cu	$\Delta \epsilon_{\rm in}$	2.75	45	Dasgupta
63Sn37Pb	W	28.6	45	Dasgupta
Sn3.9Ag0.6Cu	W	227	58	Dasgupta
Sn3.9Ag0.6Cu	$\Delta\epsilon_{\scriptscriptstyle plastic}$	3.7	-1.37	Kanchanomai

Solder	D	C	n	source	
63Sn37Pb	$\epsilon_{ m accin}$	2E-6	1	Wiese	
Sn3.9Ag0.6Cu	$\epsilon_{ m accin}$	5E-6	2	Wiese	
63Sn37Pb	W	8E-7	1	Wiese	
Sn3.9Ag0.6Cu	W	2.5E-8	1.8	Wiese	

All tests were isothermal low cycle fatigue

Microstructure Evolution

- •Constitutive and predictive models do not take the microstructure information into consideration
- •Current efforts are directed towards determining evolution of microstructure during field-use and during accelerated thermal cycling for SnAgCu alloy systems
- •Microstructure consists of Ag₃Sn and Cu₆Sn₅ Inter Metallic Compounds (IMC) dispersed in \beta-Sn matrix

- •As soldered specimen does not have any preferred orientation
- •Shear loading (at 125°C) leads to coarsening of the Ag₃Sn IMC and the Sn rich structure and Ag₃Sn particulates have preferred orientation

Effect of Ag Composition and Cooling Rate

- •Ag₃Sn particulates can grow in form of plates during reflow
- •Slow cooling rates assist in formation of Ag₃Sn plates
- •SAC405 Alloy exhibits plate formation at slow cooling rates. SAC305 Alloy does not exhibit plate formation

SAC405

240 C; 0.2 C/sec Cooling

240 C; 1.2 C/sec Cooling

240 C; 3.0 C/sec Cooling

SAC305

240 C; 0.2 C/sec Cooling 240 C; 1.2 C/sec Cooling 240 C; 3.0 C/sec Cooling

Henderson, Ag₃Sn Plate Formation in the Solidification of Near Ternary Eutectic SnAgCu Alloys, 2004